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This article presents a three-state Markov chain as a model for the errors occur-
ring on the Ground Communications Facility (GCF). An analytic expression for
the capacity of the channel in terms of the model parameters is obtained, and com-
parison is made with the capacity of a binary symmetric channel (BSC) with the
same bit-error rate. For a better understanding of the channels intrinsic behavior
and for use in estimating the performances of different error-detecting and error-
correcting codes, we obtain analytic expressions for three sets of channel param-
eters. These are the bit error statistics, the block error statistics, and the distribu-
tion of burst lengths and error-free (gap) intervals.

I. Introduction and the Model

This article will report the progress made so far in
constructing a theoretical model for the Ground Commu-
nications Facility (GCF) high-frequency (50-kbps) wide-
band error distribution using the results of the test runs
reported by J. P. McClure (Refs. 1 and 2). In those re-
ports, the “bursty” nature of the errors is clearly notice-
able; there are error-free gaps of up to 3-min duration
(10,000,000 bits), followed by up to % s of sputtering
€rrors.

The data from the test runs, stored in twenty-five tape
reels, consisted of records of relative positions of con-
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secutive errors in the sequence of noise digits z = {z.}
(in which z, = 1 if the nth digit is in error and equal to 0
otherwise). Because of certain problems with the record-
ings, only twelve of these reels were found usable, with a
total of about 5.73 X 108 bits and an average bit error rate
of less than 10

Figure 1 is the histogram for the (error-free) gap lengths
X, for X =107 bits (or a transmission time of 1/50 s or
more). The ordinate represents the number of times a gap
of length X occurred in the twelve tape reels. Not shown
on the histogram are frequencies for the gap lengths of
100 bits or less. The frequencies for this range of gap
lengths are much higher, showing again that the errors
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occur in bursts. The modal frequencies at X = 10° and
X = 10° are denoted by A and B, respectively.

Pioneered by Gilbert (Ref. 3), many attempts have been
made at using Markov processes as theoretical models for
burst-noise channels. For example, Elliot (Ref. 4) and
Berkovits, Cohen, and Zierler (Ref. 5) have successfully
generalized the original Gilbert model (Fig. 2) for fitting
data from telephone networks. Gilbert’s model consisted
of one perfectly good state G and one error state B; i.e., an
error bit can occur only in state B.

In the generalization, an error bit can occur in either the
good state G or the bad state B, but with different proba-
bilities. In Fig. 2, transitions between the states occur in
the direction of the arrows, and if P (j|i) denotes the one-
step transition probability of going from state i to state 7,
then

P(G|B) =p, P(B|G)=P
and g =1~p, Q=1—P are the probabilities of re-
maining in B and G, respectively. If we let k and h denote
the probabilities of correct reception of a bit when the
channel is, respectively, in states G and B, then kK’ = 1 — k,
h" =1 — h are the respective probabilities of a bit being
in error in those states.

The two-state model is not adequate, however, for the
type of gap distribution obtained on the GCF channel
(see Fig. 1). For very short gap lengths (X = 10?) and
medium to larger values of the (error-free) gaps (10° <
X =10°), one may successfully characterize the communi-
cation channel by the generalized Gilbert model. But no
two-state Markov chain would suffice to represent the
whole range of the gap distribution (especially to include
the other modal frequency at B for gap lengths of about
10°¢ bits or more). We are therefore forced to consider a
model with more than two states to account for the
(error-free) gaps of length = 10¢, even though the analysis
of such a model may be mathematically unwieldy.

The following is the suggested model for the GCF.
A Markov chain with three states B, G,, and G. will be
used to generate the gap lengths (Fig. 3). Because of the
low bit error rate recorded in the data, we take both states
G and G. to be perfectly good, i.e., z, = 0 always in G,
or G.; the error bursts are produced in state B. Since actual
bursts contain good digits interspersed with errors, we let
the probability of having a good digit in this state equal
h > 0. In other words,

P(z,=1|B)=1—h<1
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and we write 1 — h = h’. As explained for Fig. 2,

P(G.|B)=p
P(B|G.)=b
P(Gi|G:) =g
P(G.|G,) =P

are the one-step transition probabilities: g = 1 — p,
r=1-g—b,Q =1— P are the probabilities of remain-
ing in B, G., and G,, respectively. For example, for a bit
error rate P, =4 X 10-°, which is of the order of the
average bit error recorded in the GCF data, if we assume
h’ = 0.5, calculations using the data give

p=020;, (q=0.380)
b=1036 r=021X102 g=06379
P=029X10%  Q =0999971

Let 1_"__(.] denote transitions between states T and U,
including sojourns in T and U; and let TUV denote a
particular (transition) path between states T and V pass-
ing through state U; T, U,V = B, G,, or G.. Then the fol-
lowing transitions between the states can produce the
pattern of gap distributions observed in the data:

(1) A long sojourn in state B (with probability ¢ = 0.8
of remaining in B at any instant of time, once having
got there) accounts for the very short gaps (long
bursts of errors, including cases of consecutive

errors).
@) BG, (=BG.Gs, - - -, BBG,, - - - , BG.B, - - - ,
2BB, - -+ ,G,BG,, - - - )accounts for gap lengths
of about 102-10° bits.
(3) BG,G,, - - - ,G:G,B, - - -+ account for gap lengths

of 10°-10* bits.

(4) g:ég (including sojourns in G, and G,) accounts for
gap lengths of 10° bits or more.

Unfortunately, the twelve reels on which our model is
based suffer from certain recording problems which have
the effect of increasing the gap lengths at the end of each
test run, thereby lowering the measured bit error rate.
It is assumed that the current test run being conducted on
the same channel but at a much lower rate (4.8 kbps) will
provide reliable data from which to estimate the param-
eters of this model. It is even likely that we may have to
modify our model to fit the new data. In such an even-
tuality, however, our method of analysis here is general
enough to handle an increase in the number of states of
the Markov chain,

JPL TECHNICAL REPORT 32-1526, VOL. Xili



Let us mention here that in 1970, Daniel Stern (Ref. 6)
of GSFC computed a number of useful empirical proba-
bilities from high-speed data collected from selected
NASCOM channels. Thus, we have some data in hand
with which to compare the results of the current test run.

Il. Summary of Results

For a better understanding of the channel’s intrinsic
behavior and for use in estimating the performance of
different error-detecting and -correcting codes on the
channel, analytic expressions in terms of the model param-
eters are obtained for three groups of channel parameters.
These are the bit error statistics, the block error statistics,
and the distributions of the burst lengths and the gap
intervals.

Section III contains the first group of statistics, consist-
ing of (1) the distribution of distances between consecutive
errors, (2) the autocorrelation of bit errors, and (3) the
probability of a sequence of consecutive errors. Distribu-
tion of distances between consecutive errors will be used
to estimate the number of gaps of a given length. For
estimating significant error patterns, we require the auto-
correlation of bit errors, and the distribution of a se-
quence of consecutive errors will show how clustered the
erTors are.

In Section IV we evaluate the capacity of the channel
(the maximum rate at which arbitrarily reliable informa-
tion can be transmitted over the channel). This capacity is
then compared with that of a binary symmetric channel
(BSC) with the same bit error rate. The capacity of the
three-state channel must always be larger than that of the
equivalent BSC; ironically, forward error correction is,
nevertheless, more difficult.

A very important group of statistics for estimating the
performance of error-correcting codes on the channel are
the block error distributions; a block is defined as a se-
quence of n bits for a fixed integer n. This group of statis-
tics, discussed in Section V, consists of

(1) The probability of an error block
(2) The distribution of the number of errors in a block

(3) The distribution of the number of errors in the
information digits of an interleaved code with a
given constant of interleaving (A block code C is
said to be interleaved with constant of interleaving ¢
if successive letters of individual code words are
separated on the channel by ¢ time units.)
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(4) The distribution of distances between extreme er-
rors (i.e., between the first and the last errors) in a
block, which statistic is to be used to estimate the
performance of codes that can correct error bursts
in a block, provided they are confined to a given
length

(5) The distribution of symbol errors in an n-symbol
word where a symbol is a fixed number, say m, of
consecutive bits

Section VI presents the last group of the channel param-
eters: the distribution of burst lengths. For this analysis,
a burst will be defined as a sequence (1) beginning and
ending with an error, (2) separated from the nearest
preceding and following error by a gap of no less than a
given number, say G, called the guardspace, and (3) con-
taining within it no gap equal to or greater than the given
guardspace.

Since burst correction codes can generally correct bursts
up to some fraction of the guardspace, say 1/3 (see Ref. 7),
it is important to note what percentage of the burst lengths
falls below the given fraction of a guardspace. The opti-
mum value of the guardspace is therefore that which has
the highest percentage of bursts less than this correctable
fraction (1/3) of G. This group also contains the distribu-
tion of the number of errors in a burst of a given length.
This statistic is significant because for low error densities
within a burst, burst-correcting codes can cope with occa-
sional errors in what should be an error-free guardspace.

I1l. Bit Error Statistics

To shorten the length of this article, detailed proofs of
every proposition will not be presented. Henceforth all
references to model parameters will be to those presented
in Fig. 3.

The fractions of times spent in states B, G,, and G, are
given, respectively, by

b
P(s, = B) =?P
P(SO—GZ)ZZ—QUE
Pls=G)=1r M

where w, = pg + pP + bP.
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Since errors occur only in state B, and then just with
probability A/, the bit error probability P (1) is given by

_ bPW
=2

PQ)

Let v (k) denote the probability of getting k error-free
bits between a given error and the one immediately fol-
lowing it (i.e., a gap of length k):

o (k) = P (0F1|1) @)

where {0¥1]|1} is the event that a given initial error is
followed by a gap of length k. It follows that

o(k) = P(0"|1) — P(0*|1)

=ulk)—ulk+1) 3)

where we have denoted P (0%|1) by u (k) and {0%|1} is the
event that a given error is followed by k error-free bits.
Therefore, it suffices to find expressions only for u (k) in
terms of the model parameters.

Let
G, (k) = P (0%, s, = G,|1)
G, (k) = P (0F, 5, = G, |1)
B(k) = P (0%, s, = B|1) )

where s, is the state of the channel at time k. Then

u(k) = Gy (k) + G, (k) + B (k)

and
G1 (k + 1) = P((Yc+l,8k = Gl, Sk+1 = Gl l 1)
+ P (0¥, 8, = Gy, 81 = G4 1)
+ P (Okﬂ, Sk — B, Sk — G1 | 1)
Similarly,
G(k+1)=G,(k)r+G,(k)P+B(k)p
B(k+1) = B (k) gh + G, (k) bh
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In matrix form,

(G (k+1), G (k+1), B (k+ 1)) = (G (k), Gz (k), B (k) M

(6)
where
Q P O
M=|g r bh
0 p qgh
with
G, (0)=P(s=G:{1) =0
G:(0)=P(so=G,|1)=0
B(0)=P(s,=B|1)=1 (7)
Now Egs. (6) and (5) give
(Gi(k +1),G; (k+ 1), B(k + 1))
= (G:(0), G (0), B (0)) M*
= (0,0, 1) M*+ (8)

For the purpose of deriving
u (k) = G, (k) + G; (k) + B (k)

one may use Eq. (8) and a computer after estimating the
model parameters. The results of such computer calcula-
tions and estimates will be presented in a fuller report.
But for use in the next section in finding expression for the
capacity of the channel, we give detailed solution to (8).

Write the matrix M in Eq. (6) as:

1—P P 0
M=| g 1-g-b bh 9)
0 p 1—ph

The characteristic equation associated with M is

M+ A[P+phtg+b—2—h]
+ A[bP + pPh+ phg +2h+1—h(P+p+g+Db)
— (P + ph+ g+ b)]
+h[P+p+g+b—(pP +pg+bP)—1]1=0
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with roots Ay, s, As given by

/\

[A+WF?F%+A VAT B + —]

xe =5 LA+ VA FBYS + (A~ VA T 5]
iV3 13
-——[A+\[‘Az+Balfs— A—- VAT B — o
N = LA+ VAT IS + (A — VA FBo]

A

—l%§m+vﬁiﬁw—m—vﬁ¢ﬁwp§

; §=d-—

N
be |
3

..\1

b=P+ph+g+b—2—h (10)

= bP -+ pPh + pgh + 2h +1
~h(P+p+g+b)—(P+ph+g+b)
d=h[P+p+g+b— (P +pP+pg —1]

To find M* is in general complicated, but using a
method described in Ref. 8 (p. 385), we get

where \; < A, < A; are real roots and M® = ¢ A", + ¢,A?M, + ¢, AMM, (11)
where
gP P bPh
M—QQ—-P)° M—(1=P) M =@ =P)][M— (L—p)h]
_ g 1 __bh
M= P N ph
bg P pbh
M= (1 =P)][m—(1—p)h] M—(I—=ph A — (1 —p)h]?
gP P bPh
[x. (1 —P)] A, = (1—P) [ — (1 —P)][A— (L —p)h]
g bh
M. = (1 P) ! (- ph
s 4 bph
=1 =P)T[—(1—p)h] —(l=ph [ = (1 —p)h]?
P P bPh
x—(@Q—-P)J A — (1 —P)] A — (= P)][xs — (1 —p)h]
= g __bh
M, = (1—7) 1 N ph
Pe p bph
[xa — (1 =P [rs— (1 —p)h] A= (1 —ph [As —(1 —p)h]?
and
_ gP bph -1 .
R vy e R TeTE S e bes (12

Using the fact that

[G: (), G=(K), B (k)] = (0,0,1) M*
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and

u(k) = G, (k) + G, (k) + B (k)
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we obtain

. rg
G, (k) = c,A¥ [M— A —=P)][x — (1 —p)h]
. g
e T T Ao P e — A=) h]
. Pg
teN TS P)][xs— (1 —p)h]
p R —
A W ey R ey ey %
) P
+ C,A N (l — p) h
— % bph K bph
Bl = e =i TN = A e
b oo bph
M T — (1 — p)AT?
and hence,
u (k) = o {[M T T TR Yy
P bph }
~(1—p)h — (L —p)h]*
. pg
+ ¢, {[M P)J[r. — (1~ p)h]
p bph
ta—a-prt [Ag—(l—mh]?}
. Pg
+ ok {[A3 — (1= P)][x—(1~p)h]

p bph
’ —(1—p>h+[x3—(1_,,>h]2} (13)

Next we find the autocorrelation of bit errors, denoted
by r(k),k=1,2, - - - . By definition then,
r(k) = P(z = 1]z, = 1); k=12, ---
which is the probability of having an error at time k
following a given initial error. The autocorrelation r (k)

measures the correlation of error positions, and it is useful
for estimating significant error patterns.

Let
é (k) = :lel)
(_;()ZP(sk G.|1)
B(k) = P(sx = B|1) (14)
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Then it follows that

r(k) = (1 —h)B(k)

To find B (k) we need the following facts:
B(k+1)=B(kg+G.(kb
G.(k+1)=G,(k)r+ G, (kP +B(k)p
Gi(k+1)=G (kQ+GC.(k)g (15)

which are easy to derive.

Here also, as in (8), we have

(Gi(k+1},G. (k+1), B (k+ 1)) = (G, (K), G, (K), B (k)) M
where

Q P O

M=| g r b

0 p g

with
Gi(0)=0=G,(0); B(0)=1

Hence,

(Gi (k +1),G. (k +2),B(k + 1)) = (0,0,1) if*  (16)
In this case also, as in (8), we can use a computer to find

the vector

(G (k),G. (), B(K)); k=12, ---

But it is also valuable to give an explicit solution in terms
of the model parameters by calculating M* for any k. We
shall do this in Section V.

The distribution of consecutive sequence of errors is
easily obtained. For example, the probability of a se-
quence of k errors following a given error, P (1%|1), is
given by

P(I¥|1) = (qh')*

while the probability of k consecutive errors following a
given good bit, P (1¥|0), is given by

P(1|0) = b (qW/)* + (qk'), k=12, - - -

IV. Capacity of the Channel

For estimating the maximal rate for which reliable
transmission over the channel is possible, we shall find an
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analytic expression for the capacity of the channel in
terms of the model parameters.

Let H denote the entropy of the noise sequence
2z = {zn)}; then
Proposition 1
The capacity C of the burst-noise channel is given by
C=1—-H
and

H=—lm X Pz, -

n-—>w ZiZOOI']

*, Znst) logP(zmllZl, %)
(17)
Proof:

The proof is by classical information-theoretic argu-
ments. The mutual information of the n-extension of the
channel is

1(X»Y") = H (¥") — H (Y"|X") (18)

where X (Y) is the input (output) and H (+) is the entropy
function. The transmission rate is then

R= lim 2510 (X;’ ) (19)

the capacity C is given by

C = max R

p (&)

= max lim

p(r) noow

H({Yr HQY"|X") (20)
n n
and p (x) is an input distribution.

Now for additive noise—i.e., for Y = X + Z, Z the error
sequence—we can easily show that

HY"|X")=H(z, * ** ,%n) (21)
independent of X" and that for p (x;, - - - , %) =27,
H(Y")
e 1 (22)
But
H 21, C ot R
H, - - 7)) = H (2|20, " " " »Zn)
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So by Egs. (20), (21), and (22), we have

lim

C=1- ., H@u|z, %)
=1—H (23)
where H denotes
lim H (zn|21, - s Zn-1)
and
H (24|21, " * * ,%n1)
= =3 Py, - ,2a) 108D (20|21, * 5 Bu)
2’5:00!‘1

This completes the proof of Proposition 1.

We note that a uniformly distributed, zero-memory
binary source achieves this capacity (Ref. 3).

Now let us write H as:

H:hm 2 P(Zl,"',zn)h(zl,"‘,zﬂ)
n -0 (zl,-~-,zn}
with
h(zi, = " 5 %)
= =3 P(zan|%s " %) 08P (Zpa |z, 0 ,%0)
2 =0or1l
n+l (24)

And if we assume that our model contains only one error

state B, we can show easily (see Ref. 3) that h (z,, - -, za)

can assume only (n + 1) values:
h(07), h (10%1), h (10™2), - - - ,h(10),h(1)  (25)

where {10%} is the event that an error is followed by k
error-free bits. Using Egs. (25) and (24), we have

H =

Ms

P (10%) h (10%) (26)

k

0

In terms of u (k) and v (k) (see Egs. 2 and 3), P (10¥) can
be written as

P(10Y) = P (1)u (k)
and hence,

u(k+ 1)

P(0]109) = =75

(27)
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Equation (24) then becomes

uk+1), w(k+1)
a® 8Lk

~(1- %) g (1~ u(zf(Z)D)

Hence, by Eq. (26), H becomes

- k k
H= "P(”Z“("){u(u(;:)l) log

k=0

The entropy H can also be written in terms of o (k),
using the fact that

R (10%) = —

(28)

v(k) =u(k) —u(k+1)

We see from (26) that H then becomes

H=-PQ) S v(k)logo(k) (30)

k=o

For actual computations, however, it is convenient to
use Eq. (29) because, as shown in (12),

u (k) = c, A% + ¢, AE + ¢ A% (31)

where ¢, ¢,, ¢; are constants. And since A, < X, < \,, with
A, and A, very much less than 1, we have

u(k+1)
By (29), then,

h(10%) - —xslogds — (1 — ) log (1 — As) = hy, say
(33)

The convergence in (32) is very fast. For example, for
P (1) =4 X 10-% k'’ = 0.5, the transition probabilities are

p=102 ¢g=08
b=0356 r=0002, g=0.642
P=00003, Q =0.99997
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and [u (k + 1)]/[u (k)] = 0.999991 (to six decimal places)
for k=21, while », = 0.999989.

Thus, in general the approximation h (10%) = h, is good
for all k=k,, some k, large enough. Therefore, using
Eq. (33) in (29), we get

o-1

0

uk+1), uk+1)
H=—-P() 2 u(k){ w(F) log w ()
w(k+ 1) w(k+1)
L o Al G )
FRPM ) w(k) (34)
But A
P(l)Zu(k)zZP(lO")=I—ZP(IO")
:1—P(1)Zu(k)

Hence, the capacity of the channel is given by

C=1-H
~1+P(1) ’“Ozl: u (k) {u (z’;(;:) 1) log u(ff(—l:)l)
o )

—ho[l—P(l)Zu(k):i (35)

k=0

Comparison between the model capacity C and that of
an equivalent binary symmetric channel C (BSC), for two
sets of parameter values, is shown in Table 1.

V. Block Error Statistics

We turn now to computing the group of parameters
which has the most direct application to block codes.
Specifically, for estimating the performances of burst-
correcting codes we find (A) the probability of getting an
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error block; (B) the distribution of the number of errors in
a block, denoted by P (k,n); (C) the probability, denoted
by P;(k,n), of k information-bit errors in n-information-
bit word in an interleaved code with constant of inter-
leaving ¢; (D) the distribution of symbol errors in an
n-symbol word; and (E) the distribution of distances
between extreme errors in a block.

A. Proportion of Blocks in Error
As in Ref. 5, let

TOUm)=P(z= - =2, =0,5, =Ulso =T);
UyT = B’ G1> G2 (36)
Thus, TOU (n) is the probability, starting from a given

initial state T, of having a gap of length n and ending at a
final state U at time n. Then

BOB (1)
BOG. (1)
BOG, (1) =
G.OB (1) =

gh
p
0
bh

and

BOB (n) = BOB(n — 1) gh + BOG, (n — 1) bh
BOG, (n) = BOB(n—1)p + BOG;(n — 1)r

+ BOG, (n—1)P

BOG, (n) = BOG,(n — 1) g + BOG,(n — 1) Q
G.OB (n) = G,0B (n — 1) gh + G,0G, (n — 1) bh
G.0G,(n) = G,OB(n—1)p + G:OG:(n — 1)r
+ G,0G,(n — 1) P
G.0G; (n) = G,0OG,(n—1)g + G,0G,(n — 1) Q
G.OB (n) = G,0B (n — 1) gh + G,0G, (n — 1) bh
G.0G, (n) = G,OB(n— 1)p + G:OG,(n — 1)r
+ G,0G,(n—1)P
G.0G, (n) = G,0G,(n—1)g + G0G,(n — 1) Q

(37)
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- =z, =0) = P (s, = B) [BOB (n)
+ BOG; (n) + BOG, (n)]
+ P (s, = G) [G:0B (n)
+ G.OG, (n) + G,0G, (n)]
+ P (s, = G,) [G,OB (n)
+ G:0G, (n) + G,0G; (n)]

and

P (blockerror) =1 —P(z,= - - =2z, =0) (38)

B. P (k, n)

Following Ref. 5 again, let TU (n, k) = P (k bit errors in
n-bit words, s, = U|s, = T), which as before is the proba-
bility, given initial state T, of getting k errors in n-bit
word and ending at a final state U. Then

BB(1,0) = BOB(1) = qh
BG.(1,0) = BOG,(1) =
BG,(1,0) = BOG, (1) =
G.B(1,0) = GOB(l):bh
G Gz(l 0) = G,0G; (1) =
G, (1,0) = G,0G, (1) =
B(1,00=G,0B(1)=0
G.(1,0) = G,0G, (1) =
G.G, (1, 0) = G,0G, (1) =
B(L,1) = B1B(l) = qh'
BG,(1,1) = B1G,(1) =0
BG,(1,1) = B1G,(1) =0
.B(1,1) = G,1B (1) = bW’
G2G2 (1,1) = G.,1G.(1) =0
GGl(l,l) G,1G, (1) =0
B(1,1)=G,1B(1)=0
G.(1,1) = G1G, (1) =0
GG, (L1)=Gl1G,(1)=0 (39)
In general, for k = 0,1, - - - ,n, we have
BB (n,k) = BB (n — 1,k) gh + BG. (n — 1, k) bh
+BB(n—1,k—1)gh’
+ BG,(n — 1,k — 1) bW’
BG,(n,k) = BB(n— Lk)p + BG.(n— Lk)r

+BG,(n—Lk)P

147



BG, (n,k) = BG,(n — 1,k) g + BG,(n — 1,k) Q
G:B(n,k) = G,B (n — 1,k) gh + G.G. (n — 1,k) bh
+G,B(n—Lk—1)gh’

+ G,G:(n— 1,k — 1) b’
G.G,(n k) =G,B(n—Lk)p + GG, (n— Lk)r
+ G.Gy(n— 1L,k)P
G.G,(n,k) = G.G,(n— Lk)g + G:G,(n — Lk)Q
G.G,(n,k) = GG,(n—~ 1k g+ GG, (n— 1Lk Q
G.B(n, k) = G,:B(n — 1,k) gh + G,G;(n — 1,k) bh
+GB(n—1,k—1)qh
+ GG, (n—1Lk—1)bh
GG.(nk)=GB(n—Lkp+GG,(n—Lkr
+ GG, (n—Lk)P
(40)

P (k errors in n-word) =

P (s, = B) [BB(n,k)

+ BG, (n, k) + BG; (n, k)]

+ P (s, = Go) [G.B (n, k)
+ G.G, (n, k) + G.G (n, K)]
+ P (s, = Gy) [G,B (n, k)
+ GiG, (n, k) + GG (n, k)]

(41)

C. Distribution of Symbol Errors

To find P (k-symbol errors in n-symbol word), in which
we take a symbol to be in error if at least one of its m bits
is in error,»we note that the algorithm above works here
also if we replace n by nm. We omit the details.

D. P; (k, n)

It is clear that P; (k, n) is the same as the probability of
getting k errors in a block of length tn on our channel
sampled at every tth step. That is, if, as in (15), we put

Q P O 1-P P 0

M= g r b |= g l1—g—b b
0 p ¢ 0 p 1-p
(42)

to calculate P; (k,n), all we need is the t-step transition
matrix M®; we use the M entries as our transitions
instead of M and get P, (k, n) using the algorithm (Eqgs. 39-
41) which gave us P (k, n).

By the method of Ref. 8 (p. 385) used in Section III,
we get

where P (s, = B), P(s, = G.), P (s, = ;) are as given

in (1).

148

4(2p — A)*Pg
M,=| 2(@2p— A(2P — A) g
4(2P—A)(2p— A)pg
4(2p — B)*Pg
M;=| 2(2p —B)*(2P — B)g

(2P — B) (2p — B)4pg

2(2p — A (2P — A) P
(2p — A)* (2P — Ay

2(2P — A} (2p — A)p

2(2p — B)? (2P — B) P
(2p — B)* (2P — B)*
2(2P — B)*(2p — B)p

— 1 2—-A
) == ~ (24
M pP+bP+ng1+D1( 2 >M2
1 /2 — B\?
+E<——2 > M,
where
pg pP DbP
M,=| pg pP bP
pg pP DbP

4(2P — A) (2p — A) bP
2(2P — A) (2p — A)b
4(2P — A2 pb

4(2P — B) (2p — B) Pb
2(2P — B)*(2p — B)b
4(2P — B)?pb
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D, =4Pg[2p — A]* + (2P — A2 (2p — A)?
+ 4pb (2P — A)?

D, = 4Pg [2p — B]* + (2P — B)*(2p — B)®
+ 4pb (2P — B)?

A=X+VX2—4Y
B=X - VX —&

X=P+p+g+b
Y = pP -+ bP + pg

For example, the P (s; = G, |s; = B) of being in state G,
after ¢ steps starting from state B is given by

Pg
pg + pP + bP

L AEP A — 4) (2—A>t

P(s; = Gy|s, = B) =

D, 2

L 4ep— J;)Z(zp — B) (2 = B)‘

E. Distances Between Extreme Errors in a Block

Denote by P; the probability of k bits between extreme
errors in a block of length n, given there are at least two
errors in the block. Then, by definition,

P (k bits between extreme errors and =2 errors in the block

P, =

By definition, the numerator is equal to

N-k-2

E P(0°Fle10Y); y=N—-k—2—x
k

N-k-2
= E P(0°1) P (2 = 1]2o = 1) P(0¥|0°1 &> 1)
k

z=0

N-k-2

- Zp(oq)r(k +1)P(0v]1)

= P(U)r(k+1) Zp(owu)P(ow-k-z—wu)
= P(Dr(k+ I)Zu(x)u(N—k—Z——x)

where we have used the fact that
u(x) = P(0°|1)andu (N — k — x — 2) = P (0¥*2-2|1)

for which expressions in terms of the model parameters
were found in Section ILI

Also,

(P==2errorsinblock) =1 — P (0,n) ~ P(1,n)

JPL TECHNICAL REPORT 32-1526, VOL. XIii

P (=2 errors in the block)

Hence,

PArk+D) S u@uN—k—2—x)

b= TP _PLn) “3)

VI. The Burst Statistics

A. Distribution of Burst Lengths

We start with the distribution of burst lengths. Denote
the guardspace by G and the probability of a burst of
length n, for n = 1,2, - - -, by L(n). Then, by definition,
it follows that

min (G-1,n-2)

L(n)= E P (0F10'10m1 - - - 10%|1) (44)
k=0
over all [ m, - - - | such that
0=lm, - ---,=5—1
=g (45)
and
Oklollo'ml ..... lot

is a sequence of (n — 1) + ¢ bits.
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Proposition 2

0, n=0

uw(Q)=P0°[1); n=1
L(n)= (46)

min (§-1,n-2)

Z o L(n—k—1); n=2

k=0

Proof:

Equation (46) is almost obvious by inspection, but let us
sketch a proof. Let us note first that

(1) L(0)=0
2) L1 =P(07|1) =u(9)

since a burst must start with an error, implying that the
least.length a burst can have is 1.

From Eq. (44),

min (G-1,n-2)

L(n)= Z P (0F10'10™1 - - - 10¢|1); t=G
%=0
= EOP(O"III)P{OZIO'"I -+ - 1011} (47)
But
P{010m1 - - - 10¢{|]1} =L(n—k— 1)
and

P(0F1|1) = v (k)
Now substitute these expressions in Eq. (47) to obtain (46).

B. Distribution of Errors Within a Burst

The last parameter of interest is the distribution of
errors within a burst of a given length: P (k errors in a
burst of length N), We state this in the following propo-
sition.

Proposition 3

Q(k,N)

P (k errors in a given burst of length N) = LN
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where
0if0=k=N;or0=k=1,N=2o0rk>N
u(G) = P(0°]1) #N=k=1

Q(k, N) ={ nin(G-1,n-0

Z v(x)Q(k —1LN—x—1)

7 2=k=N (48)

Here Q (k, N) is the probability of getting a burst of length
N that contains k errors.

Proof:
P (k errors in a given burst of length N)

_ P(burst of length N with k errors) (49)
- P (burst of length N)

Write the numerator as Q (k, N). Then, by definition of a
burst,

Q(0,0)=0
QkN)Y=0 for 0=k=1,N=2; or k>N
Q(L,1) =P (0°|1) = u(G) (50)

Now, for 2=k=N,

Q(k,N) = P {0°1v1 - - - 10¢|1)}

—
N-1
where the (N — 1) bits indicated contain (k — 1) errors,
0=x,y - =G—1 t=g. Hence,
min (§-1,n-k)
Q(k,N) = E P(0°10v1 - - - 10¢|1)
=0
N-1
(51)
min(G-1,n-k)
= E P(0°1|1)P {0*1 - - - 10%|1}
— —
N—x—2
0=y - =min(G—1LN-—-x—k); t=¢g

and the (N — x — 2) bits indicated contain (k — 2) errors.
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Therefore,

min(G~1,n-k)

VII. Conclusion

The empirical counterparts of all the probabilities are

Q(k,N)= E v(x)Qk —~1,N—x—1) (52) mnow being computed. A more detailed analysis of this
model, including recommendations as to the optimal error-
detecting and -correcting codes to be employed on the

Since P (burst of length n) = L (N), the proposition is

proved.

z=0

preparation.
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Table 1. Comparison between capacity of model and

that of equivalent BSC

Model parameters c C (BSC)

C (BSC)
C

P(1)=4 X 10-5,h’ = 0.5
p = 0.20,qg = 0.80

b =0.356, r = 0.21 X 10-2
g=1—b—r

P =0.289 x 10-¢

Q = 0.9999711

0.999831  0.999551

0.9970

P(1)=0.2
p=025q=0.75
b = 0.205

r = 0.699

P =0.1511

Q = .8489

0.56007  0.499598

0.8920
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